Graph Mining on Streams
نویسنده
چکیده
Multi-Pass Models: It is common in graph mining to consider algorithms that may take more than one pass over the stream. There has also been work in the W-Stream model in which the algorithm is allowed to write to the stream during each pass [9]. These annotations can then be utilized by the algorithm during successive passes and it can be shown that this gives sufficient power to the model for PRAM algorithms to be simulated [8]. The Stream-Sort model goes one step further and allows sorting passes in which the data stream is sorted according to a key encoded by the annotations [1].
منابع مشابه
Frequent Pattern Mining from Dense Graph Streams
As technology advances, streams of data can be produced in many applications such as social networks, sensor networks, bioinformatics, and chemical informatics. These kinds of streaming data share a property in common—namely, they can be modeled in terms of graph-structured data. Here, the data streams generated by graph data sources in these applications are graph streams. To extract implicit,...
متن کاملGraphZip: Mining Graph Streams using Dictionary-based Compression
A massive amount of data generated today on platforms such as social networks, telecommunication networks, and the internet in general can be represented as graph streams. Activity in a network’s underlying graph generates a sequence of edges in the form of a stream; for example, a social network may generate a graph stream based on the interactions (edges) between dierent users (nodes) over t...
متن کاملEfficient Graph Structure for the Mining of Frequent Itemsets from Data Streams
In this paper, we propose a graph structure which captures important data streams. This graph can be easily maintained and mined for frequent item sets as well as various other patterns like constrained item sets. This graph captures the contents of transaction in a window and arranges nodes according to some canonical order that is unaffected by changes in item frequency. This graph structure ...
متن کاملGraphZip: Dictionary-based Compression for Mining Graph Streams
A massive amount of data generated today on platforms such as social networks, telecommunication networks, and the internet in general can be represented as graph streams. Activity in a network’s underlying graph generates a sequence of edges in the form of a stream; for example, a social network may generate a graph stream based on the interactions (edges) between dierent users (nodes) over t...
متن کاملDetecting Concept Drift in Classification Over Streaming Graphs
Detecting concept drift in data streams has been widely studied in the data mining community. Conventional drift detection methods use classifiers’ outputs (e.g., classification accuracy, error rate) as indicators to signal concept changes. As a result, their performance greatly depends on the chosen classifiers. However, there is little work on addressing concept drift in graph-structured data...
متن کاملA Semantic Graph-Based Approach for Mining Common Topics from Multiple Asynchronous Text Streams
In the age of Web 2.0, a substantial amount of unstructured content are distributed through multiple text streams in an asynchronous fashion, which makes it increasingly difficult to glean and distill useful information. An effective way to explore the information in text streams is topic modelling, which can further facilitate other applications such as search, information browsing, and patter...
متن کامل